On Hultman Numbers

نویسندگان

  • Jean-Paul Doignon
  • Anthony Labarre
چکیده

Finding a sequence of transpositions that transforms a given permutation into the identity permutation and is of the shortest possible length is an important problem in bioinformatics. Here, a transposition consists in exchanging two contiguous intervals of the permutation. Bafna and Pevzner introduced the cycle graph as a tool for working on this problem. In particular, they took advantage of the decomposition of the cycle graph into so-called alternating cycles. Later, Hultman raised the question of determining the number of permutations with a cycle graph containing a given quantity of alternating cycles. The resulting number is therefore similar to the Stirling number of the first kind. We provide an explicit formula for computing what we call the Hultman numbers, and give a few numerical values. We also derive formulae for related cases, as well as for a much more general problem. Finally, we indicate a counting result related to another operation on permutations called the “block-interchange”.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007